
J. Fluid Mech. (2000), vol. 406, pp. 199–219. Printed in the United Kingdom

c© 2000 Cambridge University Press

199

The anomalous motion of superfluid helium in a
rotating cavity

By K A R E N L. H E N D E R S O N1

AND C A R L O F. B A R E N G H I2

1Faculty of Computer Studies and Mathematics, University of the West of England,
Bristol, BS16 1QY, UK

e-mail: Karen.Henderson@uwe.ac.uk
2Department of Mathematics, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK

e-mail: C.F.Barenghi@ncl.ac.uk

(Received 13 August 1998 and in revised form 21 August 1999)

We numerically solve the nonlinear two-fluid Hall–Vinen–Bekharevich–Khalatnikov
(HVBK) equations for superfluid helium confined inside a short Couette annulus. The
outer cylinder and the ends of the annulus are held fixed whilst the inner cylinder
is rotated. This simple flow configuration allows us to study how the vortex lines
respond to a shear in the presence of boundaries. It also allows us to investigate
further the boundary conditions associated with the HVBK model. The main result
of our investigation is the anomalous motion of helium II when compared to a
classical fluid. The superfluid Ekman cells always rotate in the opposite sense to a
classical Navier–Stokes fluid due to the mutual friction between the two fluids, whilst
the sense of rotation of the normal fluid Ekman cells depends on the parameter range
considered. We also find that the tension of the vortex lines forces the superfluid to
rotate about the inner cylinder almost like a rigid column.

1. Introduction and motivation
When the temperature T of liquid helium is reduced below the lambda point, T =

Tλ = 2.172 K, a phase transition takes place and liquid helium becomes a quantum
fluid called helium II. Helium II has very unusual properties, the study of which is a
major topic of condensed matter physics. Our concern is the macroscopic dynamics of
helium II. By macroscopic we mean that we are interested in phenomena which take
place on a scale much larger than the interatomic spacing traditionally of interest to
the condensed matter physicists. In particular we want to investigate the nature of the
flow of helium II and how it differs from the flow of a classical fluid such as water: this
is the realm of superfluid hydrodynamics. There are two more motivations to study
the hydrodynamics of a superfluid. The first arises from the engineering applications:
helium is the only substance available in liquid form at temperatures near absolute
zero, so it is important as a cryogenics coolant. Applications range from infrared
detectors in Space science to the cooling of superconducting magnets in particle
physics. The second motivation comes from recent experimental developments in
which the relation between classical and quantum turbulence is investigated (Donnelly
1991a; Smith et al. 1993 ; Barenghi, Swanson & Donnelly 1995; Barenghi et al. 1997;
Nore, Abid & Brachet 1997a, b; Maurer & Tabeling 1998; Melotte & Barenghi 1998),
including the construction of a superfluid wind tunnel.
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The fluid dynamics picture of helium II dates back to Landau’s two-fluid model
(Landau & Lifshitz 1987), in which helium II is described as the intimate mixture
of two fluid components, the inviscid superfluid and the viscous normal fluid. The
former corresponds to the quantum mechanical ground state and is similar to a
classical inviscid Euler fluid. The latter arises from the thermal excitations (similar
to the phonons of solid state physics) and is similar to a classical viscous Navier–
Stokes fluid. The relative proportion of superfluid and normal fluid is determined
by the temperature: at T = 0 helium II is entirely superfluid, while at T > Tλ
it is entirely ‘normal’ and behaves like an ordinary classical fluid called helium I.
Provided that the sample of helium II under investigation does not contain vortex
lines, Landau’s theory gives a detailed account of all observed phenomena, including
some famous effects which seemed paradoxical to the early investigators, for example
the frictionless motion in thin capillaries, the fountain effect, the existence of second
sound and superleaks.

It is the vortex lines which make the hydrodynamics of helium II particularly
interesting (Donnelly 1991b). They appear in the superfluid component when helium
II rotates or when it moves along a tube faster than a small critical velocity. They
also introduce dissipation and limit the otherwise perfect heat conducting property
of the superfluid, which affects the engineering applications. A vortex line in helium
II consists of a very small hollow core region (of radius a0 ≈ 10−8 cm) around which
the superfluid velocity field vs spins with fixed circulation, given by the relation∫

C
vs · dl = Γ , (1.1)

where C is a path around the vortex core and the quantum of circulation Γ =
0.97×10−3 cm2 s−1 is the ratio of Plank’s constant and the mass of an atom of helium.

Because of the smallness of Γ the typical flow of helium II contains a very large
number of vortex lines. For example, if helium II is contained inside a cylinder
and rotates as a solid body at constant angular velocity Ω, vortex lines appear
in the superfluid; they are aligned along the axis of rotation and form a uniform
array with areal density 2Ω/Γ (Feynman 1955), which is approximately 104 lines
per square centimetre at the frequency of rotation of 1 Hz. Now there are two lines
of attack to the problem of understanding the flow of helium II in the presence of
vortices. The first approach was pioneered by Schwarz (1982, 1985, 1988); it consists of
performing direct numerical simulations in which the motion of individual vortex lines
is integrated in time in the presence of a given normal fluid using the laws of vortex
dynamics (the Biot-Savart rule or its local induction approximation). This approach,
which was followed up by other investigators (Samuels 1992; Aarts & deWaele 1994),
has shed light onto the problem of quantum turbulence (Nemirowskii & Fiszdon
1995; Tough 1982). Unfortunately it has two drawbacks: since the individual motion
of many vortex lines must be determined, it is computationally very expensive, and it
is not dynamically self-consistent because there is no feedback of the vortices onto the
imposed normal fluid. The second approach is based on a continuum approximation
which generalizes Landau’s two-fluid theory; the approximation is justified by the
large density of vortices which is typically present in the flow. The advantage is that
it is less computationally expensive and it is self-consistent. It is the second approach
which we investigate in this paper.

In Landau’s original two-fluid theory the superfluid is irrotational, but it is possible
to modify Landau’s equations to take into account the existence of quantized vorticity.
A new set of equations, referred to as the HVBK model in the literature, was derived
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Figure 1. The problem’s configuration. The fluid is contained inside a cylindrical box of inner
radius R1, outer radius R2, height D and gap R2 − R1 = D. The inner cylinder rotates at constant
angular velocity Ω, while the outer cylinder and the top and bottom end plates are stationary.

by a number of people over the years to describe a continuum in which a fluid
particle is a small but macroscopic region which is threaded by a high density of
vortex lines, all pointing almost in the same direction (Hall & Vinen 1956; Hall 1960;
Khalatnikov 1965; Hills & Roberts 1977). Together with the vortex lines, the HVBK
model introduces two new physical effects which are absent in Landau’s theory. The
first is that the superfluid vortex lines scatter the thermal excitations, thus introducing
a coupling force between normal fluid and superfluid components called the mutual
friction force; this effect is important in problems of heat flow because it leads to
extra dissipation. The second effect is that the vortex lines have energy per unit length,
that is tension. Because of the tension, the vortex lines which thread a fluid particle
can oscillate (vortex waves), thus giving the superfluid an intrinsic springiness.

Actual solutions of the HVBK equations have been obtained only for a small
number of flows. In particular it is worth mentioning three flows. The first is the very
simple, almost trivial case of solid body rotation inside a rotating cylinder (Hall 1960),
which was historically the first flow to be explored and clarified the concept of mutual
friction. The second is flow in a cylindrical pipe (Geurst 1979). Theoretically, this is
still a rather unexplored area which has connection with heat transfer and the study
of quantum turbulence. A related problem which involves studying boundary effects
and modelling turbulent helium flow was considered by Fiszdon et al. (1994). The
third flow is Couette flow between two infinitely long, concentric, rotating cylinders.
Despite the large number of experiments (see the review by Donnelly & LaMar 1988)
and the early pioneering theoretical attempts of Chandrasekhar & Donnelly (1957)
and Snyder (1974), it took a long time to understand the nature of helium Couette
flow and make contact between theory (Barenghi & Jones 1987; Barenghi 1992) and
experiments (Swanson & Donnelly 1991; Bielert & Stamm 1993). Recent theoretical
work on Couette flow includes the study of nonlinear Taylor flow (Henderson,
Barenghi & Jones 1995; Henderson & Barenghi 1994) and provides the best test of
the validity of the HVBK model.

The aim of this paper is to study another simple laminar flow in order to gain more
insight into the hydrodynamics of helium II. The problem which we have chosen is
the flow of a fluid which is confined radially between two concentric cylinders of
inner and outer radius R1 and R2, and axially between two fixed plates which are
separated by the distance D = R2−R1, see figure 1. The top and bottom plates and the
outer cylinder are held stationary and the inner cylinder rotates at constant angular
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velocity Ω, thus introducing shear into the system. Essentially, what we study is
unit-aspect-ratio Couette flow. This flow has two key features: the shear and the fact
it is dominated by end effects in all directions, both parallel and perpendicular to the
natural axial direction of the vortex lines in a rotating system. How these two features
affect the quantized vorticity is a problem which has never been tackled before. The
first feature (the shear) makes our flow different from the solid-body rotating cylinder
mentioned earlier, while the second feature (the end plates) makes it different from
Couette flow between infinitely long cylinders which we have already studied. The
second feature also allows us to study the issue of the boundary conditions, which is
a delicate topic of the HVBK theory (Henderson et al. 1995).

Understanding this flow is also a necessary step in view of future work in which
we plan to study the transition from Couette flow to Taylor vortices at finite values
of aspect ratio h = H/D where H is the height of the cylinders. Previous work on the
transition was carried out in the infinite cylinder approximation h→∞. Unfortunately
this approximation fails at low temperatures, because the critical axial wavenumber
of the instability, calculated from linear stability analysis, tends to zero as T → 0
(Barenghi & Jones 1987). This effect is so pronounced that, in a typical apparatus,
even at a temperature as high as T = 2 K the Taylor vortex cells are so elongated
in the axial direction that the flow is dominated by what happens at the ends. So
the study of end effects is related to the study of flows of helium II at temperatures
closer to absolute zero. The importance of end effects was not apparent to the early
experimentalists who studied helium Couette flow. Unlike water, helium II cannot be
easily visualized, and they were misled by the analogy with classical Couette flow in
which the Taylor cells have size of the order of the gap’s width D for which if H/D
is sufficiently large end effects do not matter. There is only one experiment in which
a successful flow visualization was carried out in helium II using glass microspheres,
but it involved turbulent flows (Bielert & Stamm 1993). So one of our aims is to
provide some ‘theoretical flow visualization’ and highlight similarities and differences
between the flow patterns of helium II and those of a classical Navier–Stokes fluid.

The plan of the paper is as follows: Section 2 provides the necessary background
to superfluid hydrodynamics. Section 3 introduces the governing equations. The
boundary conditions and the method of solution are discussed in § 4 and § 5. Section
6 describes the results. Finally § 7 draws some conclusions.

2. The two-fluid theory
We consider helium II at the constant temperature T and call vn and vs the normal

fluid and superfluid velocity fields, ρn and ρs the normal fluid and superfluid densities,
ρ = ρn + ρs helium’s total density, pn and ps effective pressures and νn the normal
fluid kinematic viscosity. The relative amount of normal fluid and superfluid present
in the flow depends on the temperature of the liquid: if T → Tλ then ρs/ρ → 0 and
ρn/ρ → 1; if T → 0 then ρs/ρ → 1 and ρn/ρ → 0. The incompressible isothermal
HVBK equations of motion of the two fluids are

∂vn

∂t
+ (vn · ∇)vn = −∇pn + νn∇2vn +

ρs

ρ
F , (2.1)

∂vs

∂t
+ (vs · ∇)vs = −∇ps − νsT − ρn

ρ
F , (2.2)

∇ · vn = 0, ∇ · vs = 0. (2.3)
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What makes the HVBK equations different from Landau’s two-fluid equations is the
existence of a macroscopic vorticity field

ωs = ∇× vs, (2.4)

and the introduction of the mutual friction force F and the vortex tension force
−νsT . Essentially, the superfluid vorticity ωs is a measure of how many vortex line
singularities are contained in a given small region of fluid and point along a particular
direction. Microscopically – that is to say on scales smaller than the scale described by
the HVBK theory – each vortex line is a tiny hollow around which the microscopic
superfluid velocity field is irrotational because it is proportional to the gradient of the
phase of the quantum mechanical wave function. The HVBK equations thus represent
a coarse-graining of the theory of Landau. From ωs we define the unit vector ω̂s

along the vorticity field

ω̂s =
ωs

ωs
, (2.5)

where ωs = |ωs|. The mutual friction force is

F = 1
2
Bω̂s × (ωs × (vn − vs − νs∇× ω̂s)) + 1

2
B′ωs × (vn − vs − νs∇× ω̂s), (2.6)

where B and B′ are coefficients which describe the interaction between the normal
fluid and the vortices (Barenghi, Donnelly & Vinen 1983; Samuels & Donnelly 1990).
In the regime in which the HVBK equations apply these coefficients depend only
on temperature and are well known from measurements, neglecting a very weak
dependence of these coefficients on the velocity and frequency (Swanson et al. 1987).
The parameter B is always positive, whilst parameter B′ is negative for temperatures
above 2.06 K and positive for temperatures below 2.06 K. Finally the vortex tension
force −νsT is given by

T = ωs × (∇× ω̂s), (2.7)

where νs = (Γ/4π) log (b0/a0) is the vortex tension parameter, a0 is the vortex core
radius and b0 = (ωs/Γ )−1/2 is the intervortex spacing. Note that νs has the same
dimension as a kinematic viscosity, but physically it is very different: it represents the
ability of a superfluid particle to oscillate because of the vortex waves which can be
excited on the vortex lines threading the particle itself.

The HVBK equations have three interesting limits. Firstly, if T → Tλ, then ρs/ρ→
0, ρn/ρ → 1, helium II becomes entirely ‘normal’ and the the normal fluid equation
(2.1) reduces to the classical viscous Navier–Stokes equation

∂vn

∂t
+ (vn · ∇)vn = −∇pn + νn∇2vn. (2.8)

Secondly, if T → 0, then ρs/ρ→ 1, ρn/ρ→ 0 and helium II becomes entirely ‘super’:
the superfluid equation (2.2) reduces to the equation of a pure superflow

∂vs

∂t
+ (vs · ∇)vs = −∇ps − νsωs × (∇× ω̂s). (2.9)

Finally, if we set Plank’s constant equal to zero, the quantum of circulation Γ vanishes,
and so does νs in which case (2.9) reduces to the classical inviscid Euler equation

∂vs

∂t
+ (vs · ∇)vs = −∇ps. (2.10)

It must be stressed that the HVBK model applies to helium II only if quantized
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vorticity exists in the superfluid, that is to say if the angular velocity Ω exceeds the
critical value

ΩC =
2Γ

πR2D

[
ln

(
2D

πao

)
+

1

4

]
(2.11)

(Swanson & Donnelly 1987). The study of flows for which Ω is approximately equal
to ΩC , that is to say of laminar flows with few superfluid vortex lines, is beyond the
validity of the HVBK model (which is based on partial differential equations) and
would require the approach of Schwarz (in which the motion of individual vortices is
computed). Studying what happens to isolated vortex lines is important to understand
the fundamental nature of friction (Barenghi et al. 1983; Sonin 1987; Thouless, Ao &
Niu 1996), and it involves non-trivial experimental problems of detection. However,
since the friction is essentially proportional to the amount of quantized vorticity, the
back reaction of the vortex lines onto the normal fluid would be very small, so we
would not expect the normal fluid motion to be very different from the motion of a
classical Navier–Stokes fluid in this case, unlike the findings which we shall present
in § 6.

Hereafter we shall thus consider situations which refer to Ω > ΩC . Using the
parameters chosen in § 6, the critical angular velocity corresponds typically to the
Reynolds number Re ≈ 50, where Re will be defined in § 3.

3. The governing equations
It is convenient to represent the velocity fields of our problem in terms of departures

from azimuthal Couette flow v0. Using cylindrical coordinates (r, φ, z) we write

vn = v0 + un, vs = v0 + us, (3.1a, b)

where Couette flow is

v0 = v0
φφ̂ = (ar + b/r)φ̂, (3.2)

and φ̂ is the unit vector in the azimuthal φ-direction. The Couette parameters a and
b are defined as

a = − ΩR2
1

(R2
2 − R2

1)
, b =

ΩR2
1R

2
2

(R2
2 − R2

1)
(3.3a, b)

(Chandrasekhar 1961) so that v0
φ = ΩR1 at r = R1 and v0

φ = 0 at r = R2. We make the
simplifying assumption that the flow is axisymmetric and express un and us in terms
of stream functions ψn and ψs:

un = (unr , u
n
φ, u

n
z) =

(
−1

r

∂ψn

∂z
, unφ,

1

r

∂ψn

∂r

)
, (3.4)

us = (usr, u
s
φ, u

s
z) =

(
−1

r

∂ψs

∂z
, usφ,

1

r

∂ψs

∂r

)
. (3.5)

Equations (3.4) and (3.5) guarantee that conditions (2.3) are automatically satisfied.
The equations are then made dimensionless using D as the unit of length and

the normal fluid viscous time scale D2/νn as the unit of time. This choice allows
us to recover smoothly the classical limit T → Tλ and study the case of a classical
viscous Navier–Stokes flow for comparison. The model’s equations are obtained by
considering the φ-components of (2.1) and (2.2) and the φ-components of the curl of
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(2.1) and (2.2):

∂unφ

∂t
= L1u

n
φ +N1,

∂ωn
φ

∂t
= L1ω

n
φ +N2, (3.6)

∂usφ

∂t
= N3,

∂ωs
φ

∂t
= N4. (3.7a, b)

These equations must be solved in r1 6 r 6 r2, 0 6 z 6 1, where r1 = R1/D and
r2 = R2/D, together with the conditions which link the stream functions ψn and ψs

to the azimuthal components of the vorticities

L2ψ
n = −rωn

φ, L2ψ
s = −rωs

φ. (3.8a, b)

L1 and L2 are linear operators defined by

L1 =
∂2

∂x2
+

1

r

∂

∂x
− 1

r2
+

∂2

∂z2
, (3.9)

L2 =
∂2

∂x2
− 1

r

∂

∂x
+

∂2

∂z2
, (3.10)

where x = r − r1, and N1, N2, N3 and N4 are the nonlinear quantities

N1 =
1

r

(
2a+

unφ

r

)
∂ψn

∂z
+

1

r

∂(ψn, unφ)

∂(z, x)
+
ρs

ρ
Fφ, (3.11)

N2 =
2

r
(u0
φ + unφ)

∂unφ

∂z
− ωn

φ

r2

∂ψn

∂z
+

1

r

∂(unφ, ψ
n)

∂(x, z)
+
ρs

ρ

(
∂Fr

∂z
− ∂Fz

∂x

)
, (3.12)

N3 =
1

r

(
2a+

usφ

r

)
∂ψs

∂z
+

1

r

∂(ψs, usφ)

∂(z, x)
− ρn

ρ
Fφ − βTφ, (3.13)

N4 =
2

r
(u0
φ + usφ)

∂usφ

∂z
− ωs

φ

r2

∂ψs

∂z
+

1

r

∂(usφ, ψ
s)

∂(x, z)
− ρn

ρ

(
∂Fr

∂z
− ∂Fz

∂x

)
− β

(
∂Tr

∂z
− ∂Tz

∂x

)
,

(3.14)
where

∂(f, g)

∂(x, y)
=
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

and −βT = −β(Tr, Tφ, Tz) is the dimensionless vortex tension force and F is now
the dimensionless mutual friction.

The solution of the dimensionless nonlinear equations (3.6)–(3.8) is obtained by
direct time integration starting from an arbitrary configuration. The actual compu-
tational box is 0 6 z 6 1 and 0 6 x 6 1. The input parameters are the radius ratio
η = R1/R2, the Reynolds number Re = ΩR1D/ν

n, which is the dimensionless velocity
of the inner cylinder, and helium’s temperature T . The temperature determines the
normal fluid and superfluid ratios ρs/ρ and ρn/ρ, the mutual friction coefficients B
and B′ and the dimensionless vortex tension parameter β = νs/νn.

Note that we need the actual size D of the system to determine νs, which is
proportional to the logarithm of the ratio of the average distance between vortex
lines b0 and the vortex core radius a0. This extra dimensional input would not be
necessary if we had chosen the vortex core a0 as the unit of length, which is of course
too small. What we do in practice is to use the size D = 0.0474 cm of Swanson &
Donnelly’s helium apparatus at the University of Oregon. The results do not depend
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much on this choice because it is only the logarithm of b0/a0 which is used. In the
same spirit we approximate b0 = (ωs/Γ )−1/2 ≈ (2|a|/Γ )−1/2.

4. The boundary conditions
The system of equations (3.6)–(3.8) requires three boundary conditions for the

normal fluid and three boundary conditions for the superfluid at each boundary.
These boundary conditions are not determined by the HVBK model itself, but are
extra requirements which we impose to model the physics of the fluid–boundary
interaction.

The normal fluid is viscous, hence it must satisfy standard no-slip boundary
conditions. These conditions are that vn = 0 at all stationary boundaries z = 0, z = 1

and r = r2, and that vn = Reφ̂ at the moving boundary r = r1. Taking (3.1a) into
account we have

unφ(r1, z) = unφ(r2, z) = 0, (4.1)

unφ(r, 0) = unφ(r, 1) = −v0
φ, (4.2)

ψn(r1, z) = ψn(r2, z) = ψn(r, 0) = ψn(r, 1) = 0, (4.3)

∂ψn

∂r
(r1, z) =

∂ψn

∂r
(r2, z) =

∂ψn

∂z
(r, 0) =

∂ψn

∂z
(r, 1) = 0. (4.4)

The superfluid’s boundary conditions are more delicate. The superfluid is inviscid.
In the absence of vortex lines it need only satisfy the condition that there is no
flow across all boundaries, without any restriction on the tangential motion: slip is
allowed. This requirement, that vsr = 0 at r = r1 and r = r2 and that vsz = 0 at z = 0
and z = 1, is equivalent to

ψs(r1, z) = ψs(r2, z) = 0, (4.5)

ψs(r, 0) = ψs(r, 1) = 0. (4.6)

Extra conditions are introduced by the presence of the vortex lines. In our previous
paper (Henderson et al. 1995) we studied Couette flow between infinitely long cylin-
ders and argued that the conditions at the boundaries r = r1 and r = r2 parallel to
the rotation-induced superfluid vorticity are

ωs
φ(r1, z) = ωs

φ(r2, z) = 0, (4.7)

usφ(r1, z) = usφ(r2, z) = 0. (4.8)

Equation (4.7) implies that the azimuthal velocity of the superfluid at r = r1 and
r = r2 is the same as that of the cylinders; thus the superfluid slips only in the axial
direction, at the cylinder walls. Equation (4.8) also implies that ωs

r = 0 at r = r1 and
r2. Because of (4.7), this means that the only superfluid vorticity which exists at the
walls is aligned along the z-direction, which is the axis of rotation. This is the natural
orientation of the vortex lines in the case a solid-body rotating cylinder or annulus,
and also in the case of Couette flow, provided that Ω is smaller than the critical value
for the onset of Taylor vortex flow. The fact that both the superfluid velocity and
the superfluid vorticity are parallel near the cylindrical walls means that there is no
mutual friction there. Calculations of nonlinear Taylor flow performed using (4.7) and
(4.8) gave results which are in agreement with torque and second sound measurements
(Henderson & Barenghi 1994; Henderson et al. 1995). The drawback of using (4.7)
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and (4.8) is that one neglects a small vortex-free region near the walls. The vortex-free
region was also neglected in the linear stability calculations (Barenghi 1992) which
predicted with success the observed appearance of Taylor vortex flow. There are
theoretical reasons for the existence of the vortex-free region, and its existence has
been observed in some experiments involving a rotating annulus. However it is not
clear how to describe it in the context of a continuum model (the HVBK theory)
based on a high density of vortex filaments. Fortunately it is apparent from the
agreement with the measurements obtained using (4.7) and (4.8) that the vortex-free
region must have only a limited effect on the main flow, and hereafter we neglect it
and adopt conditions (4.7) and (4.8).

The situation is very different at the boundaries z = 0 and z = 1 which are
perpendicular to the rotation axis, z. In the related configurations of a cylinder or
an annulus, which rotate as a solid body, the vortex lines would naturally meet these
boundaries in a perpendicular fashion. This leads us to assume that the vortex lines
are purely axial at z = 0 and 1, that is to say

ωs
r(r, 0) = ωs

r(r, 1) = 0, (4.9)

ωs
φ(r, 0) = ωs

φ(r, 1) = 0. (4.10)

Equation (4.9) is equivalent to

∂usφ

∂z
(r, 0) =

∂usφ

∂z
(r, 1) = 0. (4.11)

The superfluid’s boundary conditions have been discussed by Khalatnikov (1965)
who argued that the vortex lines can either slide at the boundary or remain totally
or partially pinned at some small geometrical imperfection. Khalatnikov argues that
the velocity, vL of a vortex line at a stationary boundary has tangential components
given by

vL = c1n̂× (n̂× ω̂s)− c2n̂× ω̂s
, (4.12)

where n̂ is the unit vector normal to the surface and c1 and c2 are coefficients which
describe the interaction of the vortices with the boundary. Total pinning of the
vortices to the end plates at z = 0 and z = 1 cannot occur, because each rotation
would wrap up the vortex lines until de-pinning takes place. So what is likely to
take place is partial or perfect sliding, depending on the nature and the smoothness
of the boundaries. The most interesting case, which avoids introducing unknown
parameters, is the case of perfect sliding, which corresponds to c1 → ∞ and c2 → ∞
in Khalatnikov’s theory. This requires that n̂ × ω̂s = 0, which is equivalent to our
boundary conditions ωs

r = ωs
φ = 0. In conclusion, the conditions (4.10) and (4.11)

which we adopt refer to Khalatnikov’s perfect sliding.

5. Numerical method
Equations (3.6) and (3.7) are time stepped forward in time starting from an arbitrary

initial condition, which is either a very small seed field or a steady solution previously
obtained at some other values of the input parameters. The equations are discretized
on a mesh of radial points xi (i = 0, 1, 2, . . . N) and axial points zj (j = 0, 1, 2, . . .M).
The spatial discretization is based on a fourth-order method at all points including
the boundary points. The time stepping from time tk to time tk+1 = tk + ∆t, where
∆t is a small time step, is based on the ADI method for the diffusion operators L1

appearing in (3.6). Each time step is divided into two Euler half-steps, the first implicit
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in x and explicit in z, the second explicit in x and implicit in z. All other terms of the
equations are time stepped using Adams–Bashforth’s explicit method. When unφ, ωn

φ,
usφ and ωs

φ are found at t = tk+1 the Poisson’s equations (3.8) are solved to determine
ψn and ψs at the new time. This is done simply by direct inversion of the operator
L2 which appears in (3.8); the matrix which corresponds to the inverse operator is
pre-calculated using a NAG routine before performing the actual time stepping.

Note that the boundary conditions (4.1) and (4.2) are used when solving the
equation for unφ, while the conditions (4.3) are used to solve the Poisson’s equation for
ψn. The boundary conditions on ωn

φ are obtained using the boundary conditions on
ψn (4.3), (4.4) and the equation relating ψn and ωn

φ (3.8a). Equation (3.8a) is evaluated
at the point x = 0 to give

−r0ωn
0,j =

(
∂2ψn

∂x2

)
0,j

(5.1)

where ωn
i,j = ωn

φ(xi, zj) and r0 = η/(1− η). Using the fourth-order forward difference

formula for (∂2ψn/∂x2)0,j given that ψn0,j = (∂ψn/∂x)0,j = 0 we thus find that

ωn
0,j = −576ψn1,j − 216ψn2,j + 64ψn3,j − 9ψn4,j

72r0(∆x)2
. (5.2)

Boundary conditions at x = 1, z = 0 and z = 1 are obtained in the same way.
For the superfluid we use (4.7) and (4.10) when solving the equation for ωs

φ,
(4.8) and (4.11) when determining usφ, and (4.5) and (4.6) when solving the Poisson’s
equation for ψs. Note that unlike all other equations which are solved on the internal
points only, usφ must be determined on the boundaries x0, xN , z0 and zM too; this
is achieved by using fourth-order forward/backward difference formulae to calculate
the derivatives.

We use a uniform xi, zj mesh, unlike Cliffe (1983) for example who studied very
small-aspect-ratio classical Couette flow and introduced mesh refinement in the corner.
No mesh refinement was used in similar studies of classical Couette flow such as
Lucke, Mihelicic & Wingerath (1984) or Pfister et al. (1988). After a preliminary
investigation, in order to improve the numerical resolution near the end plates, we
decided to restrict our study to solutions which are symmetric around the midplane
z = 1

2
. This is done by requiring that ψn and ψs are antisymmetric around the midplane

and by determining them only in the half-space k = 0, . . .M/2, with ψn = ψs = 0 at
z = 1

2
. In this way the size of the matrix used to invert the Poisson’s equations is

reduced and more mesh points are used to resolve what happens near a single end
plate. For the sake of clarity the results plotted in § 6 illustrate the flow in the entire
cavity. Before restricting the symmetry in this way, low-resolution runs did not detect
any solution in which the symmetry was broken in the range of parameters used. In
the classical Couette problem at very small aspect ratio (typically h < 1) it is known
that there are such asymmetric solutions called the anomalous modes; they consist
of a single large cell which occupies almost the entire box and a very small eddy in a
corner. These solutions occur however at Reynolds numbers higher than the values
which we have investigated.

Finally we remark that the number of mesh points used is typically N = 16 and
M = 32, which is sufficient to achieve numerical convergence. We have also tested
our results using a higher number of points; the code appears robust enough to give
qualitatively good solutions using rather small values of N and M around 10. This
is consistent with what was reported by Pfister et al. (1988) who used typically only
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Figure 2. Motion of a classical fluid at η = 0.976 and Re = 100: (a) stream function ψ;
(b) azimuthal velocity uφ; (c) azimuthal vorticity ωφ; (d) radial velocity ur; (e) axial velocity uz .

N = 20 and M = 10. The size of the time step which we have used is typically
∆t = 10−4, and the equations are integrated for a number of steps equivalent to a
few dimensionless units of time, until the solution has settled down and has become
time-independent.

6. Results and their interpretation
The results of the calculation of the nonlinear HVBK equations are given in

figures 2–8, 10 and 11 which show contour plots of various quantities. Each figure
extends over the whole computational domain 0 6 x 6 1, 0 6 z 6 1 with the inner
cylinder and outer cylinder on the left and right respectively. Before considering
helium II, it is instructive to make clear the motion of a classical fluid in the same
configuration; this will allow us to draw comparisons between classical fluid dynamics
and superfluid hydrodynamics. For the radius ratio we choose the value η = 0.976
of the helium apparatus used by Swanson & Donnelly (1987) at the University of
Oregon. We set the mutual friction coefficients B and B′ equal to zero so that the
normal fluid equations (3.6) and (3.8a) reduce to the classical Navier–Stokes equation.
Starting from an initial very small seed field, we integrate the equations in time until
we obtain a steady solution at Reynolds number, Re = 100. The flow u which we
obtain is a superposition of azimuthal motion uφ around the inner cylinder and
toroidal motion ur and uz in the vertical plane. The latter motion is in the form of a
pair of cells similar to a Taylor vortex pair, but as it is caused by boundaries rather
than a centrifugal instability, it is hereafter referred to an Ekman cell pair. Figure 2
shows contour plots of all the interesting fields: the stream function ψ, the azimuthal
velocity uφ, the azimuthal vorticity ωφ, the radial velocity ur and the axial velocity uz .
Note that the total azimuthal velocity is obtained by adding the Couette motion v0

φ,
which is z-independent, to uφ. Figure 2(a) shows that the Ekman cells extend radially
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Figure 3. Motion of helium II in the same configuration as in figure 2 (η = 0.976 and Re = 100)
at T = 2.11 K: results for the normal fluid corresponding to the results for the superfluid shown
in figure 4. (a) Stream function ψn; (b) azimuthal velocity unφ; (c) azimuthal vorticity ωn

φ; (d) radial
velocity unr ; (e) axial velocity unz .

throughout the cavity. Figure 2(b) shows that there are horizontal layers near the
stationary end plates at z = 0 and z = 1. The vorticity (figure 2c) has similar layers
there, besides a layer at the inner cylinder x = 0 as well.

We now consider helium II at temperature T = 2.11 K. We choose this temperature
as an arbitrary reference because it is high enough to make a connection to what
happens in the classical limit T → Tλ = 2.172 K, but it is also low enough that
an appreciable amount of mass is superfluid (ρs/ρ = 0.23). We call the flow of
helium II calculated at T = 2.11 K, η = 0.976 and Re = 100 the reference state.
This flow is shown in figures 3 and 4, which refer to the normal fluid and the
superfluid components respectively. The first striking result is that the normal fluid
and superfluid Ekman cells rotate in the opposite direction to a classical Navier–
Stokes fluid; compare figures 2(d), 3(d) and 4(d). In the classical case the fluid near
the midplane (where the braking effect of the end plates is least) is pushed outward,
so the fluid near the end plates moves inward to conserve mass. In the case of helium
II both the normal fluid and the superfluid near the end plates are pushed outwards.

The other main result is the remarkable azimuthal motion usφ of the superfluid. It is
apparent from figure 4(b) that the superfluid rotation is almost independent of z, like
the motion of a column of liquid. On the other hand the normal fluid (see figure 3b)
and a classical fluid (see figure 2b) rotate in a way which is strongly affected by the
ends at z = 0 and z = 1.

Now we consider the total superfluid vorticity field ωs
tot = ωs + 2aẑ, which tells us

about the superfluid vortex lines. It can be seen in figures 4(c), (f) and (g) that ωs
tot

is predominantly in the axial direction (compare the magnitudes of ωs
r,tot, ω

s
φ,tot and

ωs
z,tot) and is concentrated near the inner cylinder. This theoretical prediction can be

tested in an experiment by comparing the attenuation of second sound pulses sent
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Figure 4. Motion of helium II in the same configuration as in figure 2 (η = 0.976 and Re = 100)
at T = 2.11 K: results for the superfluid corresponding to the results for the normal fluid shown
in figure 3. (a) Stream function ψs; (b) azimuthal velocity usφ; (c) azimuthal vorticity ωs

φ; (d) radial
velocity usr; (e) axial velocity usz; (f) radial vorticity ωs

r; (g) axial vorticity ωs
z .

across the cell in the z-direction, using two pairs of transducers located in the inner
radial region and in the outer radial region. We have seen in § 4 that with our choice
of boundary conditions there is no mutual friction near the cylindrical walls. The
situation is different near the end plates z = 0 and z = 1, where we expect a large
mutual friction because of the different boundary conditions satisfied by the normal
fluid and the superfluid.

We now study what happens if we change the temperature away from the reference
level. If T is reduced below T = 2.11 K the major effect is that the superfluid tends
to rotate more and more like a solid column, independent of z; compare the plots
of usφ at T = 2.11 K (figure 4b), T = 2.08 K (figure 5b) and T = 1.8 K (figure 5a).
The normal fluid pattern does not change much, only unr becomes more concentrated
near the end plates. If T is increased above T = 2.11 K the situation is very different.
At T = 2.15 K the flow pattern is similar to that showed in figures 3 and 4 but
the column-like behaviour of usφ is reduced (see figure 5c). A further increase in
temperature to T = 2.17 K makes a qualitative change: figures 6 and 7 show what
happens to the normal fluid and the superfluid components. Figures 6(a) and 6(d)
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min = –44.2559  max =0.00000 min = –42.4697  max =0.00000 min = – 43.8750  max =0.00000
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Figure 5. Azimuthal superfluid motion usφ at some different temperatures. (a) T = 1.8 K; (b)
T = 2.08 K; (c) T = 2.15 K. Compare with the plots at T = 2.11 K in figure 4(b) and at T = 2.17 K
in figure 7(b). All runs at η = 0.976 and Re = 100.
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(d) (e)
min = –0.377986  max =0.377986 min = –93.6772  max =0.00000 min = –2.35432  max =2.35432
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Figure 6. Results for the normal fluid at T = 2.17 K corresponding to the results for the superfluid
shown in figure 7 (η = 0.976, h = 1 and Re = 100): (a) stream function ψn; (b) azimuthal velocity
unφ; (c) azimuthal vorticity ωn

φ; (d) radial velocity unr ; (e) axial velocity unz . All runs at η = 0.976 and
Re = 100.

show that the normal fluid Ekman cells now rotate in the same direction as the flow
of a classical fluid (figures 2a and 2d), with negative radial motion near the end
plates. This is what we expect for consistency, because as T approaches Tλ = 2.172 K
the superfluid fraction ρs/ρ vanishes and there is no mutual force to distinguish
between the normal fluid of helium II and a classical fluid. The sense of rotation of
the superfluid Ekman cells remains the same as it was at lower temperatures, with
usr positive near the end plates. The azimuthal motion of the superfluid (figure 7b) is
now similar to that of the normal fluid, that is to say it depends strongly on z and
there is no column-like pattern left. This is a consequence of the reduced dynamical
importance of the superfluid: at this high temperature the density ratio is ρs/ρ = 0.022
only, so the superfluid is slaved to the normal fluid and is carried along by friction.

We shall now investigate what physical mechanism makes the superfluid rotation
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Figure 7. Results for the superfluid at T = 2.17 K corresponding to the results for the normal fluid
shown in figure 6: (a) stream function ψs; (b) azimuthal velocity usφ; (c) azimuthal vorticity ωs

φ; (d)
radial velocity usr; (e) axial velocity usz; (f) radial vorticity ωs

r; (g) axial vorticity ωs
z .

usφ to be more column-like the lower the temperature is. This tendency is not hindered
by the end plates because the superfluid tangential velocity at z = 0 and z = 1 can
slip, unlike what happens to unφ which is brought to rest by the boundaries. We have
performed a numerical experiment which suggests that it is the tension of the vortex
lines which causes the superfluid to move in this fashion. We consider again the refer-
ence state at T = 2.11 K (see figure 4b) and artificially alter the tension parameter β,
holding all other parameters the same. Physically, altering β corresponds to changing
the value of Plank’s constant. Note that if Plank’s constant is zero then the quantum
of circulation is zero and β = 0, which reduces the superfluid to a classical ideal
Euler fluid. We find that the column-like motion becomes stronger if β is increased
(figure 8a) and weaker if β is decreased (figure 8b). We conclude that it is the stiffness
of the vortex lines which makes the superfluid rotate about the inner cylinder in this
way. The macroscopic field usφ is the average effect of a great number of microscopic
eddies around each vortex line, and these lines do not like to bend too much.

A natural question which arises from our results is what are the relative effects
of vortex tension and mutual friction. We have seen that the vortex tension has a
strong effect on the superfluid, causing it to rotate as a column of liquid. On the other
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min = –41.4874  max =0.00000 min = – 48.2641  max =0.00000
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Figure 8. Effects on usφ of artificially altering the vortex tension parameter β away from its correct
value βexact. All runs at η = 0.976 and Re = 100. (a) β = 4βexact; (b) β = 0.2βexact. Compare with the
reference state (figure 4b).

hand it is the mutual friction which forces the normal fluid to rotate in an opposite
direction to the classical case for some values of the parameters.

We can justify the non-classical meridional motion of the superfluid using the fol-
lowing argument: We consider the azimuthal components of the steady-state version
of (3.7) evaluated on the ends of the cylinders, z = 0 and z = h. Applying the relevant
boundary conditions we find that

0 =
∂2vnφ

∂z2
+
ρs

ρ
Fφ, (6.1)

vsrω
s
z = −βTφ − ρn

ρ
Fφ (6.2)

on z = 0 and z = 1, where ωs
z represents the total axial superfluid vorticity. We want

to show that vsr > 0 on the end plates indicating that the superfluid will always rotate
in the opposite direction to a classical fluid. The azimuthal component of normal
fluid velocity, vnφ, is zero on the ends of the cylinder but will increase rapidly to
close to the Couette value in the midplane where the braking effect of the cylinder
ends is least. Thus a boundary layer structure will exist at the ends of the cylinders
giving ∂2vnφ/∂z

2 < 0, and so from (6.1) we find that Fφ is positive on the ends of the
cylinders. Let us now consider (6.2). Because we are rotating the inner cylinder only,
the vortex lines point downwards, thus ωs

z < 0, and since we have found that Fφ > 0,
the mutual friction is forcing the superfluid to rotate counter-classically. Turning our
attention to the vortex tension term, we find that on the ends of the cylinders

Tφ = −sgn (ωs
z)
∂ωs

φ

∂z
. (6.3)

From our numerical results we find that ∂ωs
φ/∂z < 0, in other words the vortex tension

is always negative and exerts a classical influence on the Ekman cells; however the
sum of the two terms on the right-hand side of (6.2) always results in a negative total.
In order to justify this let us assume that the superfluid rotates in the same direction
as a classical fluid, in other words, that there is outflow in the centre of the cavity
and inflow close to the ends of the cylinders. If this was the case in the lower half
of the cavity, the azimuthal component of superfluid vorticity ωs

φ would be positive
which together with (4.10) would imply ∂ωs

φ/∂z > 0 resulting in vsr > 0 from (6.2).
This contradicts the assumption that the superfluid rotates in the same direction as
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Figure 9. The parameters α1 (dotted line) and α2 (solid line) as functions of temperature. The
dashed line takes the constant value of 1.

a classical fluid. Thus the superfluid must flow in the opposite sense to the classical
case, in which case ∂ωs

φ/∂z will be negative but vsr > 0.
In conclusion, the meridional motion of vs is always opposite to that of a classical

fluid due to the mutual friction, no matter what the intensity of the mutual friction.
We shall now turn our attention to explaining why the normal fluid rotates in a
classical direction at temperatures close to Tλ = 2.172 K but in the opposite direction
at lower temperatures. Since vnr = 0 on the ends of the cylinders we shall obtain an
expression for ∂vnr /∂z on z = 0 and show that this expression is negative at higher
temperatures, indicating classical flow, and positive at lower temperatures, indicating
counter-classical flow.

Taking the curl of (2.2) we obtain the following non-dimensional equation for the
total superfluid vorticity:

∂ωs

∂t
+ (vs · ∇)ωs − (ωs · ∇)vs = −β(∇× T )− ρn

ρ
(∇× F ). (6.4)

Evaluating the azimuthal component of (6.4) on z = 0 and z = 1 we find

∂vnr
∂z

= − β

|ωs
z|
∂2ωφs

∂z2
+ α1

ωs
z

|ωs
z|
∂vnφ

∂z
− α2

β

ωs
z

∂2ωs
r

∂z2
(6.5)

where the temperature-dependent parameters are given by

α1 = −B
′

B
and α2 =

(
2ρ− ρnB′
ρnB

)
.

Considering the terms on the right-hand side of (6.5), we find from our numerical
results that both ∂2ωs

r/∂z
2 and ∂2ωs

φ/∂z
2 are positive on z = 0 and since vnφ will

increase away from z = 0 the term ∂vnφ/∂z will be positive there. Thus the first term
on the right-hand side of (6.5) will always be negative and the contribution to ∂vnr /∂z
from the last two terms will depend on the magnitude and sign of parameters α1 and
α2. These parameters are plotted in figure 9. The dotted and solid lines represent α1

and α2 respectively, with the dashed line taking the constant value of 1. It can be
seen that α1 is positive for 2.06 < T < 2.172 and decreases rapidly as the temperature



216 K. L. Henderson and C. F. Barenghi

(a) (b) (c)

(d) (e)
min = –8.40911  max =8.40911 min = –281.032  max =0.00000 min = –146.531  max =146.531

min = –0.950628  max =1.87170 min = –1.44099  max =1.44099

+

+

–

–

–

+

–

+

+ +

+

Figure 10. Results for the normal fluid at higher Reynolds number Re = 300 at T = 2.11 K and
η = 0.976. The corresponding results for the superfluid are shown in figure 11. (a) Stream function
ψn; (b) azimuthal velocity unφ; (c) azimuthal vorticity ωn

φ; (d) radial velocity unr ; (e) axial velocity unz .

decreases. For temperatures below 2.05 K α1 is small and negative. Thus the second
term on the right-hand side of (6.5) is negative for 2.06 < T < 2.172 and decreases
in magnitude as the temperature is reduced below Tλ = 2.172 K. It can be seen that
α2 is always positive and increases linearly with decreasing temperature from a value
close to unity at T = 2.17 K. Thus the third term on the right-hand side of (6.5)
is positive and increases in magnitude as the temperature decreases. Thus we have
explained our findings for the normal fluid. At higher temperatures the negative terms
on the right-hand side of (6.5) dominate resulting in the normal fluid moving in a
classical way; however as the temperature is reduced, the positive terms increase and
the negative terms decrease in magnitude resulting in ∂vnr /∂z > 0 and thus the normal
fluid Ekman cells rotate in the opposite sense to a classical fluid.

We have also explored the flow pattern at increasing Reynolds numbers up to
Re = 300; see the plots for the normal fluid and the superfluid in figures 10 and 11
respectively. Apart from the expected stronger layers near the boundaries, the only
effect is that usφ is more z-dependent.

Even though the mutual friction parameters B and B′ are well known, we have
performed a series of numerical experiments by artificially changing their values in
order to determine the relative roles of the two terms in the mutual friction force (2.6).
Changing B′ or setting it equal to zero does not make a qualitative difference. However
decreasing B means that relatively the vortex tension force becomes more important
and we observe that vsφ becomes more columnar as discussed earlier.

Finally we have considered the flow at different values of aspect ratio. Starting
from the reference state at η = 0.976, we have decreased η. We have found that if
η 6 0.85 the normal fluid Ekman cells rotate in the ‘classical’ direction, that is in the
opposite direction to the superfluid.
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Figure 11. Results for the superfluid at higher Reynolds number Re = 300 at T = 2.11 K and
η = 0.976. The corresponding results for the normal fluid are shown in figure 10. (a) Stream function
ψs; (b) azimuthal velocity usφ; (c) azimuthal vorticity ωs

φ; (d) radial velocity usr; (e) axial velocity usz;
(f) radial vorticity ωs

r; (g) axial vorticity ωs
z .

7. Conclusions
We have considered a very simple flow in a closed rotating cavity to study how the

superfluid vortex lines respond to a shear in the presence of boundaries both parallel
and perpendicular to the rotation axis, which is the natural direction of alignment of
the vortices. The problem has also allowed us to study the boundary conditions of
the HVBK equations. A major aim has been to gain more insight into the flow of
helium II, which, because of the low temperature environment, cannot be observed
directly like a classical fluid.

The main result of our investigation is the anomalous motion of helium II when
compared to the motion of a classical fluid. It is also remarkable that even in the
simple laminar flow problem which we have considered the normal fluid and the
superfluid components of helium II can move in ways which are very different to
each other. The first interesting finding is caused by the stiffness of the vortex lines
which resist bending; the vortex tension forces the superfluid to rotate around the
inner cylinder almost like a rigid column, slipping at the top and bottom plates.
The lower the temperature the more pronounced this effect is, because the superfluid
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component has more mass and thus determines the dynamics of the entire helium
II. Since the vortex lines’ stiffness is determined by Plank’s constant, this is an effect
which highlights the nature of helium II as a quantum fluid rather than a mere
inviscid Euler fluid. The second interesting result is that the superfluid Ekman cells
always rotate in the opposite direction to that of a classical Navier–Stokes fluid, for
which the inflow is near the end plates. This non-classical meridional motion is due
to the mutual friction. The third interesting result is that the normal fluid Ekman
cells need not be the same as the motion of a classical Navier–Stokes fluid. In most
cases we have found that the normal fluid moves in the opposite direction, due to the
mutual friction forcing.

All these results give more insight into the hydrodynamics of helium II and
how it differs from the motion of a classical fluid. Because of the low temperature
environment, it is very difficult to visualize helium II directly, unlike the pattern of a
classical fluid such as water or oil which is immediately visible to the experimentalist.
More insight into the motion of helium II is clearly needed to understand the current
experimental work on helium II turbulence and its relation with classical turbulence.

The natural development of our work is to study how end effects influence the
transition from Couette flow to Taylor vortices as the temperature is reduced.

C.F.B.’s research on the subject is funded by an equipment grant of the Royal Society
of London. K.L.H. gratefully acknowledges the support of the Nuffield Foundation.
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